|
@@ -0,0 +1,149 @@
|
|
|
+from .DataStream import EMchPosmap as pos_map, day_stamp, span_days, time_border, calc_interval
|
|
|
+from .MerchantReader import MerchantReader
|
|
|
+from matplotlib.figure import Figure
|
|
|
+from matplotlib import ticker
|
|
|
+from io import BytesIO
|
|
|
+import numpy as np
|
|
|
+from .algorithm import calc_mchratios
|
|
|
+import time as time
|
|
|
+
|
|
|
+import logging
|
|
|
+logger = logging.getLogger('painter')
|
|
|
+
|
|
|
+def allpathes(reader: MerchantReader, tuple_pathes: dict, days: list, spec=None):
|
|
|
+ count = len(days)
|
|
|
+ show_detail = True if len(list(tuple_pathes.keys())) == 1 else False
|
|
|
+ if show_detail == False:
|
|
|
+ all_datas = reader.init_data(count)
|
|
|
+ else:
|
|
|
+ all_datas = None
|
|
|
+
|
|
|
+ for name, tup in tuple_pathes.items():
|
|
|
+ mch_datas = reader.init_data(count)
|
|
|
+ for _card_type, _spec in tup:
|
|
|
+ if spec is not None and _spec != spec:
|
|
|
+ continue
|
|
|
+
|
|
|
+ if show_detail:
|
|
|
+ detail_datas = reader.init_data(count)
|
|
|
+ else:
|
|
|
+ detail_datas = None
|
|
|
+
|
|
|
+ for i, day in enumerate(days):
|
|
|
+ data = reader.read(day, name, _card_type, _spec)
|
|
|
+ if data is not None:
|
|
|
+ column_pos = i * 86400
|
|
|
+ view = mch_datas[:, column_pos:column_pos + 86400]
|
|
|
+ view += data
|
|
|
+
|
|
|
+ if show_detail:
|
|
|
+ view = detail_datas[:, column_pos:column_pos + 86400]
|
|
|
+ view += data
|
|
|
+ if show_detail:
|
|
|
+ yield name, _card_type, _spec, detail_datas
|
|
|
+ if all_datas is not None:
|
|
|
+ all_datas += mch_datas
|
|
|
+ yield name, None, None, mch_datas
|
|
|
+
|
|
|
+ if show_detail == False:
|
|
|
+ yield 'all', None, None, all_datas
|
|
|
+
|
|
|
+
|
|
|
+class MerchantPainter(object):
|
|
|
+ def __init__(self, start_time: int, end_time: int, mchids: set = None, card_types: set = None, spec: int = None, filter_wave: int = None):
|
|
|
+ self._reader = MerchantReader()
|
|
|
+ _start_time, _end_time, self._mchids, self._card_types, self._spec, self._filter_wave = start_time, end_time, mchids, card_types, spec, filter_wave
|
|
|
+
|
|
|
+ start_time = self._reader.near_stamp(_start_time,True)
|
|
|
+ end_time = self._reader.near_stamp(_end_time,False)
|
|
|
+
|
|
|
+ stime = lambda t: time.strftime('%d-%H:%M:%S', time.localtime(t))
|
|
|
+ logger.debug("start_time=%s end_time=%s",stime(start_time) ,stime(end_time))
|
|
|
+
|
|
|
+ interval = calc_interval(start_time, end_time)
|
|
|
+ start_time = time_border(interval, start_time, True)
|
|
|
+ end_time = time_border(interval, end_time, False)
|
|
|
+ self._days = span_days(start_time, end_time)
|
|
|
+ self._start_time = start_time
|
|
|
+ self._end_time = end_time
|
|
|
+ self._interval = interval
|
|
|
+ pass
|
|
|
+
|
|
|
+ def _fig_funs(self):
|
|
|
+ def create():
|
|
|
+ fig = Figure(figsize=(19, 8))
|
|
|
+ ax = fig.subplots()
|
|
|
+ ax.set_title('success ratio')
|
|
|
+ ax.set(xlabel='time', ylabel='ratio')
|
|
|
+ return ax, fig
|
|
|
+
|
|
|
+ def flush(ax, fig, ticks, lables):
|
|
|
+ ax.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=4))
|
|
|
+ ax.set_xticks(ticks=ticks)
|
|
|
+ ax.set_xticklabels(lables)
|
|
|
+ fig.autofmt_xdate()
|
|
|
+ ax.grid()
|
|
|
+ fig.subplots_adjust(left=0.1, right=0.8, top=0.95, bottom=0.1)
|
|
|
+ ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
|
|
|
+
|
|
|
+ buf = BytesIO()
|
|
|
+ fig.savefig(buf, format="png")
|
|
|
+ return buf
|
|
|
+
|
|
|
+ return create, flush
|
|
|
+
|
|
|
+ def paint(self):
|
|
|
+ tuple_pathes = self._reader.many_tuple_path(self._days, self._mchids, self._card_types, self._spec)
|
|
|
+ gen = allpathes(self._reader, tuple_pathes, self._days, self._spec)
|
|
|
+ if len(self._days) == 0:
|
|
|
+ return BytesIO()
|
|
|
+
|
|
|
+ day_stamp = self._days[0]
|
|
|
+ fig_create, fig_flush = self._fig_funs()
|
|
|
+ ax, fig = fig_create()
|
|
|
+ x = np.array([d - self._start_time for d in range(self._start_time, self._end_time)])
|
|
|
+
|
|
|
+ if self._filter_wave is not None and self._filter_wave > 1:
|
|
|
+ window = np.ones(self._filter_wave) / self._filter_wave
|
|
|
+ else:
|
|
|
+ window = None
|
|
|
+
|
|
|
+ for _mchid, _card_type, _spec, _data in gen:
|
|
|
+ succ, count, y = calc_mchratios(_data, pos_map, self._start_time - day_stamp, self._end_time - day_stamp)
|
|
|
+ y = np.convolve(y, window, 'same') if window is not None else y
|
|
|
+ ax.plot(x, y, ls='-', label=self._label(chname=_mchid, succ=succ, count=count, card_type=_card_type, spec=_spec))
|
|
|
+
|
|
|
+ ticks = [d - self._start_time for d in range(self._start_time, self._end_time + 1, self._interval)]
|
|
|
+ xlables = [time.strftime('%d-%H:%M:%S', time.localtime(d + self._start_time)) for d in ticks]
|
|
|
+
|
|
|
+ return fig_flush(ax, fig, ticks, xlables)
|
|
|
+
|
|
|
+ def _label(self, chname, succ, count, card_type=None, spec=None):
|
|
|
+ _card_type = None
|
|
|
+ if card_type == 1:
|
|
|
+ _card_type = 'SY'
|
|
|
+ elif card_type == 2:
|
|
|
+ _card_type = 'SH'
|
|
|
+ elif card_type == 4:
|
|
|
+ _card_type = 'YD'
|
|
|
+ elif card_type == 5:
|
|
|
+ _card_type = 'LT'
|
|
|
+ elif card_type == 6:
|
|
|
+ _card_type = 'DX'
|
|
|
+ elif card_type == 7:
|
|
|
+ _card_type = 'TH'
|
|
|
+
|
|
|
+ lable = f"{chname}"
|
|
|
+ if _card_type is not None:
|
|
|
+ lable += f"-{_card_type}"
|
|
|
+
|
|
|
+ if spec is not None:
|
|
|
+ lable += f"-{spec}"
|
|
|
+
|
|
|
+ if count > 0:
|
|
|
+ ratio = round(succ * 100 / count, 2)
|
|
|
+ else:
|
|
|
+ ratio = 0.00
|
|
|
+ lable += f":{succ}/{count}={ratio}%"
|
|
|
+
|
|
|
+ return lable
|